Recent scores

Moving 8 week average of scores

Sep2025Oct2025Nov2025Dec2025Jan20260.000.020.040.060.080.100.120.140.160.180.200.220.240.260.280.300.32
forecasterCFA_Pyrenew-Pyrenew_E_COVIDCFA_Pyrenew-Pyrenew_HE_COVIDCFA_Pyrenew-PyrenewHEW_COVIDCMU-TimeSeriesCovidHub-baselineCovidHub-ensembleUGA_flucast-INFLAenzaforecast_datemean_wis
Aug2025Sep2025Oct2025Nov2025Dec2025Jan2026Feb20260.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.001.051.101.151.201.25
forecasterCFA_Pyrenew-Pyrenew_E_COVIDCFA_Pyrenew-Pyrenew_HE_COVIDCFA_Pyrenew-PyrenewHEW_COVIDCMU-TimeSeriesCovidHub-baselineCovidHub-ensembleUGA_flucast-INFLAenzaforecast_daterel_mean_wis
if (params$target == "nhsn") {
  scaled_WIS_plot <- knitr::knit_expand(
                    text = c(
                      "## Mean WIS per capita\n",
                      "\n",
                      "```{r moving_average_wis_rate, echo=FALSE, message=FALSE, out.width='100%'}\n",
                      "plotting_score(sliding_ordered, mean_wis_rate) %>% gplot()\n",
                      "```\n",
                      "\n")
                  )
 plot2 <- knitr::knit_expand(
                 text = c(
                   "## All by WIS per capita\n",
                   "```{r plotting_all_recent_forecasts, out.width='300%', fig.dim=c(12,60), fig.align = 'center', message=FALSE, eval = params$target == 'nhsn'}\n",
                   "plotting_forecasts(plotting_window = this_week - 12 * 7, score_window = 8, geo_score_rate_order, n_plotting = 60)\n",
                   "```\n",
                   "\n"
                 ))
}
Aug2025Sep2025Oct2025Nov2025Dec2025Jan2026Feb20260.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.00
forecasterCFA_Pyrenew-Pyrenew_E_COVIDCFA_Pyrenew-Pyrenew_HE_COVIDCFA_Pyrenew-PyrenewHEW_COVIDCMU-TimeSeriesCovidHub-baselineCovidHub-ensembleUGA_flucast-INFLAenzaforecast_datemean_cov_90
Aug2025Sep2025Oct2025Nov2025Dec2025Jan2026Feb20260.000.050.100.150.200.250.300.350.400.450.500.550.600.65
forecasterCFA_Pyrenew-Pyrenew_E_COVIDCFA_Pyrenew-Pyrenew_HE_COVIDCFA_Pyrenew-PyrenewHEW_COVIDCMU-TimeSeriesCovidHub-baselineCovidHub-ensembleUGA_flucast-INFLAenzaforecast_datemean_cov_50
0.000.050.100.000.050.100.150.200.250.300.350.400.450.500.000.050.100.150.200.250.300.350.400.450.500.000.050.100.150.200.250.300.350.400.450.50Sep2025Oct2025Nov2025Dec2025Jan20260.000.050.100.150.200.250.300.350.400.450.50
forecasterCFA_Pyrenew-Pyrenew_E_COVIDCFA_Pyrenew-Pyrenew_HE_COVIDCFA_Pyrenew-PyrenewHEW_COVIDCMU-TimeSeriesCovidHub-baselineCovidHub-ensembleUGA_flucast-INFLAenzaforecast_datemean_wis0123NA

Large recent data revisions

The states most likely to be subject to total revisions requiring substitution.

recent_archive$DT %<>% mutate(geo_value = factor(geo_value, levels = av_re_spread$geo_value))
recent_archive %>%
  autoplot("value") +
  facet_wrap(~geo_value, ncol = 3, scales = "free") +
  theme(strip.text.x = element_text(size = 8)) +
  ylim(0, NA) +
  labs(title = "States with the largest mean revision")

Forecasts from 8 weeks ago, sorted by decreasing recent WIS

Plotting the forecasts from 8 weeks ago until 3 weeks ago for each geography, sorted by WIS or population scaled WIS.

if (params$target == "nhsn") {
  plot1 <- knitr::knit_expand(
                    text = c(
                      "## Worst 5 by WIS per capita\n",
                      "```{r plotting_recent_forecasts, out.width='300%', fig.dim=c(10,5), fig.align = 'center', echo=FALSE, message=FALSE, eval = params$target == 'nhsn'}\n",
                      "plotting_forecasts(plotting_window = this_week - 12 * 7, score_window = 8, geo_score_rate_order, n_plotting = 5)\n",
                      "```\n",
                      "\n")
                  )
 plot2 <- knitr::knit_expand(
                 text = c(
                   "## All by WIS per capita\n",
                   "```{r plotting_all_recent_forecasts, out.width='300%', fig.dim=c(12,60), fig.align = 'center', message=FALSE, eval = params$target == 'nhsn'}\n",
                   "plotting_forecasts(plotting_window = this_week - 12 * 7, score_window = 8, geo_score_rate_order, n_plotting = 60)\n",
                   "```\n",
                   "\n"
                 ))
}

geo_score_order <- scores %>%
  filter(forecast_date > this_week - score_window * 7) %>%
  scores_by_state() %>%
  filter(forecaster == "CMU-TimeSeries") %>%
  arrange(desc(mean_wis)) %>% pull(geo_value)
plotting_forecasts(plotting_window = this_week - 12 * 7, score_window = 8, geo_score_order, n_plotting = 60)