Recent scores

Moving 8 week average of scores

Feb2025Mar2025Apr2025May2025Jun2025Jul2025Aug2025Sep2025Oct2025Nov2025Dec2025Jan2026Feb2026050100150200250300
forecasterCADPH-FluCAT_EnsembleCEPH-Rtrend_fluHCFA_Pyrenew-Pyrenew_H_FluCFA_Pyrenew-Pyrenew_HE_FluCMU-climate_baselineCMU-TimeSeriesCornell_JHU-hierarchSIRCU-ARNB_NetCU-ensembleDMAPRIME-QRfjordhest-ensembleFluSight-baselineFluSight-ensembleFluSight-HJudge_ensembleFluSight-lop_normFluSight-trained_meanFluSight-trained_medGatech-ensemble_pointGatech-ensemble_probGatech-ensemble_statGoogle_SAI-FluBoostQRGoogle_SAI-FluEnsISU_NiemiLab-GPEJHU_CSSE-CSSE_EnsembleJHUAPL-DMDJHUAPL-MorrisLosAlamos_NAU-CModel_FluLosAlamos-DoSiDoLosAlamos-ThinMintLUcompUncertLab-chimeraLUcompUncertLab-pucaMDPredict-SIRSMIGHTE-JointMIGHTE-NsembleMOBS-EpyStrain_FluMOBS-GLEAM_FLUHMOBS-GLEAM_RL_FLUHNAU-epymorphNAU-FourCATNAU-vulPESNEU_ISI-AdaptiveEnsembleNEU_ISI-FluBcastNIH-Flu_ARIMANU-PGF_FLUHOHT_JHU-nbxdPSI-PROFPSI-PROF_betaPSI-PROF_MOASigSci-TSENSStevens-ILIForecastUGA_CEID-auto_AVG_LBUGA_CEID-WalkUGA_flucast-CopycatUGA_flucast-INFLAenzaUGA_flucast-ScenariocastUGuelph-CompositeCurveUI_CompEpi-EpiGenUM-DeepOutbreakUMass-AR2UMass-flusionUNC_IDD-InfluPaintUVAFluX-CESGCNUVAFluX-EnsembleUVAFluX-FS_OptimWISEUVAFluX-OptimWISEVTSanghani-PRIMEforecast_datemean_wis
Jan2025Feb2025Mar2025Apr2025May2025Jun2025Jul2025Aug2025Sep2025Oct2025Nov2025Dec2025Jan2026Feb20260.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.001.05
forecasterCADPH-FluCAT_EnsembleCEPH-Rtrend_fluHCFA_Pyrenew-Pyrenew_H_FluCFA_Pyrenew-Pyrenew_HE_FluCMU-climate_baselineCMU-TimeSeriesCornell_JHU-hierarchSIRCU-ARNB_NetCU-ensembleDMAPRIME-QRfjordhest-ensembleFluSight-baselineFluSight-ensembleFluSight-HJudge_ensembleFluSight-lop_normFluSight-trained_meanFluSight-trained_medGatech-ensemble_pointGatech-ensemble_probGatech-ensemble_statGoogle_SAI-FluBoostQRGoogle_SAI-FluEnsISU_NiemiLab-GPEJHU_CSSE-CSSE_EnsembleJHUAPL-DMDJHUAPL-MorrisLosAlamos_NAU-CModel_FluLosAlamos-DoSiDoLosAlamos-ThinMintLUcompUncertLab-chimeraLUcompUncertLab-pucaMDPredict-SIRSMIGHTE-JointMIGHTE-NsembleMOBS-EpyStrain_FluMOBS-GLEAM_FLUHMOBS-GLEAM_RL_FLUHNAU-epymorphNAU-FourCATNAU-vulPESNEU_ISI-AdaptiveEnsembleNEU_ISI-FluBcastNIH-Flu_ARIMANU-PGF_FLUHOHT_JHU-nbxdPSI-PROFPSI-PROF_betaPSI-PROF_MOASigSci-TSENSStevens-ILIForecastUGA_CEID-auto_AVG_LBUGA_CEID-WalkUGA_flucast-CopycatUGA_flucast-INFLAenzaUGA_flucast-ScenariocastUGuelph-CompositeCurveUI_CompEpi-EpiGenUM-DeepOutbreakUMass-AR2UMass-flusionUNC_IDD-InfluPaintUVAFluX-CESGCNUVAFluX-EnsembleUVAFluX-FS_OptimWISEUVAFluX-OptimWISEVTSanghani-PRIMEforecast_daterel_mean_wis
if (params$target == "nhsn") {
  scaled_WIS_plot <- knitr::knit_expand(
                    text = c(
                      "## Mean WIS per capita\n",
                      "\n",
                      "```{r moving_average_wis_rate, echo=FALSE, message=FALSE, out.width='100%'}\n",
                      "plotting_score(sliding_ordered, mean_wis_rate) %>% gplot()\n",
                      "```\n",
                      "\n")
                  )
 plot2 <- knitr::knit_expand(
                 text = c(
                   "## All by WIS per capita\n",
                   "```{r plotting_all_recent_forecasts, out.width='300%', fig.dim=c(12,60), fig.align = 'center', message=FALSE, eval = params$target == 'nhsn'}\n",
                   "plotting_forecasts(plotting_window = this_week - 12 * 7, score_window = 8, geo_score_rate_order, n_plotting = 60)\n",
                   "```\n",
                   "\n"
                 ))
}
Feb2025Mar2025Apr2025May2025Jun2025Jul2025Aug2025Sep2025Oct2025Nov2025Dec2025Jan2026Feb20260.00.51.01.52.02.53.03.54.04.5
forecasterCADPH-FluCAT_EnsembleCEPH-Rtrend_fluHCFA_Pyrenew-Pyrenew_H_FluCFA_Pyrenew-Pyrenew_HE_FluCMU-climate_baselineCMU-TimeSeriesCornell_JHU-hierarchSIRCU-ARNB_NetCU-ensembleDMAPRIME-QRfjordhest-ensembleFluSight-baselineFluSight-ensembleFluSight-HJudge_ensembleFluSight-lop_normFluSight-trained_meanFluSight-trained_medGatech-ensemble_pointGatech-ensemble_probGatech-ensemble_statGoogle_SAI-FluBoostQRGoogle_SAI-FluEnsISU_NiemiLab-GPEJHU_CSSE-CSSE_EnsembleJHUAPL-DMDJHUAPL-MorrisLosAlamos_NAU-CModel_FluLosAlamos-DoSiDoLosAlamos-ThinMintLUcompUncertLab-chimeraLUcompUncertLab-pucaMDPredict-SIRSMIGHTE-JointMIGHTE-NsembleMOBS-EpyStrain_FluMOBS-GLEAM_FLUHMOBS-GLEAM_RL_FLUHNAU-epymorphNAU-FourCATNAU-vulPESNEU_ISI-AdaptiveEnsembleNEU_ISI-FluBcastNIH-Flu_ARIMANU-PGF_FLUHOHT_JHU-nbxdPSI-PROFPSI-PROF_betaPSI-PROF_MOASigSci-TSENSStevens-ILIForecastUGA_CEID-auto_AVG_LBUGA_CEID-WalkUGA_flucast-CopycatUGA_flucast-INFLAenzaUGA_flucast-ScenariocastUGuelph-CompositeCurveUI_CompEpi-EpiGenUM-DeepOutbreakUMass-AR2UMass-flusionUNC_IDD-InfluPaintUVAFluX-CESGCNUVAFluX-EnsembleUVAFluX-FS_OptimWISEUVAFluX-OptimWISEVTSanghani-PRIMEforecast_datemean_wis_rate
Jan2025Feb2025Mar2025Apr2025May2025Jun2025Jul2025Aug2025Sep2025Oct2025Nov2025Dec2025Jan2026Feb20260.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.00
forecasterCADPH-FluCAT_EnsembleCEPH-Rtrend_fluHCFA_Pyrenew-Pyrenew_H_FluCFA_Pyrenew-Pyrenew_HE_FluCMU-climate_baselineCMU-TimeSeriesCornell_JHU-hierarchSIRCU-ARNB_NetCU-ensembleDMAPRIME-QRfjordhest-ensembleFluSight-baselineFluSight-ensembleFluSight-HJudge_ensembleFluSight-lop_normFluSight-trained_meanFluSight-trained_medGatech-ensemble_pointGatech-ensemble_probGatech-ensemble_statGoogle_SAI-FluBoostQRGoogle_SAI-FluEnsISU_NiemiLab-GPEJHU_CSSE-CSSE_EnsembleJHUAPL-DMDJHUAPL-MorrisLosAlamos_NAU-CModel_FluLosAlamos-DoSiDoLosAlamos-ThinMintLUcompUncertLab-chimeraLUcompUncertLab-pucaMDPredict-SIRSMIGHTE-JointMIGHTE-NsembleMOBS-EpyStrain_FluMOBS-GLEAM_FLUHMOBS-GLEAM_RL_FLUHNAU-epymorphNAU-FourCATNAU-vulPESNEU_ISI-AdaptiveEnsembleNEU_ISI-FluBcastNIH-Flu_ARIMANU-PGF_FLUHOHT_JHU-nbxdPSI-PROFPSI-PROF_betaPSI-PROF_MOASigSci-TSENSStevens-ILIForecastUGA_CEID-auto_AVG_LBUGA_CEID-WalkUGA_flucast-CopycatUGA_flucast-INFLAenzaUGA_flucast-ScenariocastUGuelph-CompositeCurveUI_CompEpi-EpiGenUM-DeepOutbreakUMass-AR2UMass-flusionUNC_IDD-InfluPaintUVAFluX-CESGCNUVAFluX-EnsembleUVAFluX-FS_OptimWISEUVAFluX-OptimWISEVTSanghani-PRIMEforecast_datemean_cov_90
Jan2025Feb2025Mar2025Apr2025May2025Jun2025Jul2025Aug2025Sep2025Oct2025Nov2025Dec2025Jan2026Feb20260.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.85
forecasterCADPH-FluCAT_EnsembleCEPH-Rtrend_fluHCFA_Pyrenew-Pyrenew_H_FluCFA_Pyrenew-Pyrenew_HE_FluCMU-climate_baselineCMU-TimeSeriesCornell_JHU-hierarchSIRCU-ARNB_NetCU-ensembleDMAPRIME-QRfjordhest-ensembleFluSight-baselineFluSight-ensembleFluSight-HJudge_ensembleFluSight-lop_normFluSight-trained_meanFluSight-trained_medGatech-ensemble_pointGatech-ensemble_probGatech-ensemble_statGoogle_SAI-FluBoostQRGoogle_SAI-FluEnsISU_NiemiLab-GPEJHU_CSSE-CSSE_EnsembleJHUAPL-DMDJHUAPL-MorrisLosAlamos_NAU-CModel_FluLosAlamos-DoSiDoLosAlamos-ThinMintLUcompUncertLab-chimeraLUcompUncertLab-pucaMDPredict-SIRSMIGHTE-JointMIGHTE-NsembleMOBS-EpyStrain_FluMOBS-GLEAM_FLUHMOBS-GLEAM_RL_FLUHNAU-epymorphNAU-FourCATNAU-vulPESNEU_ISI-AdaptiveEnsembleNEU_ISI-FluBcastNIH-Flu_ARIMANU-PGF_FLUHOHT_JHU-nbxdPSI-PROFPSI-PROF_betaPSI-PROF_MOASigSci-TSENSStevens-ILIForecastUGA_CEID-auto_AVG_LBUGA_CEID-WalkUGA_flucast-CopycatUGA_flucast-INFLAenzaUGA_flucast-ScenariocastUGuelph-CompositeCurveUI_CompEpi-EpiGenUM-DeepOutbreakUMass-AR2UMass-flusionUNC_IDD-InfluPaintUVAFluX-CESGCNUVAFluX-EnsembleUVAFluX-FS_OptimWISEUVAFluX-OptimWISEVTSanghani-PRIMEforecast_datemean_cov_50
010001002003004005006007008009001000110012001300140015001600170018001900010020030040050060070080090010001100120013001400150016001700180019000100200300400500600700800900100011001200130014001500160017001800190001002003004005006007008009001000110012001300140015001600170018001900Feb2025Mar2025Apr2025May2025Jun2025Jul2025Aug2025Sep2025Oct2025Nov2025Dec2025Jan2026Feb202601002003004005006007008009001000110012001300140015001600170018001900
forecasterCADPH-FluCAT_EnsembleCEPH-Rtrend_fluHCFA_Pyrenew-Pyrenew_H_FluCFA_Pyrenew-Pyrenew_HE_FluCMU-climate_baselineCMU-TimeSeriesCornell_JHU-hierarchSIRCU-ARNB_NetCU-ensembleDMAPRIME-QRfjordhest-ensembleFluSight-baselineFluSight-ensembleFluSight-HJudge_ensembleFluSight-lop_normFluSight-trained_meanFluSight-trained_medGatech-ensemble_pointGatech-ensemble_probGatech-ensemble_statGoogle_SAI-FluBoostQRGoogle_SAI-FluEnsISU_NiemiLab-GPEJHU_CSSE-CSSE_EnsembleJHUAPL-DMDJHUAPL-MorrisLosAlamos_NAU-CModel_FluLosAlamos-DoSiDoLosAlamos-ThinMintLUcompUncertLab-chimeraLUcompUncertLab-pucaMDPredict-SIRSMIGHTE-JointMIGHTE-NsembleMOBS-EpyStrain_FluMOBS-GLEAM_FLUHMOBS-GLEAM_RL_FLUHNAU-epymorphNAU-FourCATNAU-vulPESNEU_ISI-AdaptiveEnsembleNEU_ISI-FluBcastNIH-Flu_ARIMANU-PGF_FLUHOHT_JHU-nbxdPSI-PROFPSI-PROF_betaPSI-PROF_MOASigSci-TSENSStevens-ILIForecastUGA_CEID-auto_AVG_LBUGA_CEID-WalkUGA_flucast-CopycatUGA_flucast-INFLAenzaUGA_flucast-ScenariocastUGuelph-CompositeCurveUI_CompEpi-EpiGenUM-DeepOutbreakUMass-AR2UMass-flusionUNC_IDD-InfluPaintUVAFluX-CESGCNUVAFluX-EnsembleUVAFluX-FS_OptimWISEUVAFluX-OptimWISEVTSanghani-PRIMEforecast_datemean_wis-10123NA

Large recent data revisions

The states most likely to be subject to total revisions requiring substitution.

recent_archive$DT %<>% mutate(geo_value = factor(geo_value, levels = av_re_spread$geo_value))
recent_archive %>%
  autoplot("value") +
  facet_wrap(~geo_value, ncol = 3, scales = "free") +
  theme(strip.text.x = element_text(size = 8)) +
  ylim(0, NA) +
  labs(title = "States with the largest mean revision")

Forecasts from 8 weeks ago, sorted by decreasing recent WIS

Plotting the forecasts from 8 weeks ago until 3 weeks ago for each geography, sorted by WIS or population scaled WIS.

if (params$target == "nhsn") {
  plot1 <- knitr::knit_expand(
                    text = c(
                      "## Worst 5 by WIS per capita\n",
                      "```{r plotting_recent_forecasts, out.width='300%', fig.dim=c(10,5), fig.align = 'center', echo=FALSE, message=FALSE, eval = params$target == 'nhsn'}\n",
                      "plotting_forecasts(plotting_window = this_week - 12 * 7, score_window = 8, geo_score_rate_order, n_plotting = 5)\n",
                      "```\n",
                      "\n")
                  )
 plot2 <- knitr::knit_expand(
                 text = c(
                   "## All by WIS per capita\n",
                   "```{r plotting_all_recent_forecasts, out.width='300%', fig.dim=c(12,60), fig.align = 'center', message=FALSE, eval = params$target == 'nhsn'}\n",
                   "plotting_forecasts(plotting_window = this_week - 12 * 7, score_window = 8, geo_score_rate_order, n_plotting = 60)\n",
                   "```\n",
                   "\n"
                 ))
}

plotting_forecasts(plotting_window = this_week - 12 * 7, score_window = 8, geo_score_rate_order, n_plotting = 60)

geo_score_order <- scores %>%
  filter(forecast_date > this_week - score_window * 7) %>%
  scores_by_state() %>%
  filter(forecaster == "CMU-TimeSeries") %>%
  arrange(desc(mean_wis)) %>% pull(geo_value)
plotting_forecasts(plotting_window = this_week - 12 * 7, score_window = 8, geo_score_order, n_plotting = 60)